首页 电商 正文

两个核子越靠越近时,力是怎样变化的?

2024-03-22 08:36
admin

作为自然界中的四种基本力,强核力在原子核中发挥着关键作用,它负责将核子(质子和中子)牢牢地“粘”在一起的。核子是由更小的夸克和胶子(负责传递强核力的粒子)构成的,夸克和胶子间的相互作用是由量子色动力学方程所描述。然而,由于这些方程无法被直接求解,物理学家会用一些简化的模型来描述核相互作用。

在原子核中,质子和中子的距离大多都相距较远,这种远距离足以让物理学家用简化的模型来准确预测它们之间的相互作用。然而,当核子之间的距离非常接近,近到几乎彼此重叠时,模型的预测能力就会受到限制。

虽然对于地球上的大多数物质来说,这种超短距离相互作用非常罕见,但这种距离却定义了如中子星等致密天体的核。自核物理研究开始以来,物理学家就一直试图解释强核力是如何在这种极短距离下运作的。

在一项于近期发表于《自然》的新研究中,一组物理学家就首次对强核力,以及在极短距离内质子和中子之间的相互作用进行了描述。

他们在分析了从过去的一些粒子加速器实验中所获取的数据后,发现随着质子和中子之间的距离越来越短,它们之间的相互作用会出现惊人的转变。在距离相距较远的情况下,强核力的作用主要是把质子吸引到中子上;而在距离极短情况下,这种力基本上是无差别的:它们之间的相互作用不仅能把质子吸引到中子上,而且还能让它们互相排斥或推开成对的中子。

前面我们已经提到,质子和中子之间的超短距离相互作用在大多数原子核中并不常见。因此,若想探测到这种情况,研究人员就必须借助大量高能电子与原子之间的碰撞,其中一小部分电子或许可以“撞出”一对以高动量运动的核子——这表明这对被撞出的粒子处于极短的距离上。

研究人员挖掘了先前由CLAS收集的数据来寻找这种相互作用,CLAS是位于美国杰斐逊国家实验室的一个房子大小的粒子探测器。杰斐逊国家实验室的加速器能产生非常高强度、高能量的电子束。CLAS探测器在1988年到2012年期间一直在运行,自那之后,许多研究团队便开始从这些实验数据中挖掘其他现象。

在新的研究中,研究人员分析了大致有千万亿个电子撞击原子核的海量数据。这些电子瞄准了由碳、铅、铝和铁所制成的箔片,在每种箔片中,原子的质子与中子之比各不相同。当一个电子与原子中的某个质子或中子相撞时,其散射出的能量正比于相应核子的能量与动量。

研究人员OrHen解释说:“如果我知道我撞出一个东西时有多用力,以及知道被撞出来的东西的速度有多快,我就能重建被撞物的初始动量。”

利用这种方法,研究小组观察了千万亿次电子碰撞,并设法计算出了几百对高动量核子的动量。Hen把这些核子对比作是“中子星液滴”,因为从它们的动量以及由此推断出的相互距离来看,都与中子星的极度致密的核心的环境相似。

他们将每一对独立出来的核子视为一张“快照”,并按照动量大小对这数百张快照进行了排列,动量低的一端排列着的是质子-质子对的抑制,这表明将质子吸引到中子上的强核力作用主要分布在中、高动量和短距离情况下。

随着动量由小增大,他们观察到一个转变:似乎有更多的质子-质子对和中子-中子对出现,这表明当动量越高,或者距离越短时,强核力不仅作用在质子和中子之间,而且还会作用在质子和质子、中子和中子之间。这种配对力本质上可被理解为排斥力,它意味着在短距离内,中子间的相互作用是强烈的排斥作用。

论文的第一作者AxelSchmidt解释说,一直以来,大家都认为强核力中都存在一种神秘的排斥性核,但没人知道它该如何出现如何存在,而眼前的数据则真实地展现了这种转变,这令他们非常惊讶。

研究人员认为,强核力中出现的这种转变有助于我们更好地定义中子星的结构。过去曾有证据表明,在中子星的外核中,中子大多是通过强核力的吸引力与质子配对。而新的研究表明,当粒子以更密集的结构排列,且相距的距离更短时,强核力会在中子之间产生一种斥力,在中子星的核心,这种斥力有助于防止中子星向内坍缩。

除此之外,研究小组还作出了两个新的发现。首先,他们的观察结果与一个非常简单的模型的预测相符,这个模型描述了在强核力作用下所形成的短程相关性。另外,他们还得到了一个与预期相反的结果,那就是通过质子与中子之间的相互作用,就可以对中子星的核进行严格描述,无需去详细考虑更复杂的夸克与胶子之间的相互作用。

当研究人员将观测结果与强核力的几个已有模型的预测进行比对时,找到了一个绝佳的匹配,那就是阿贡国家实验室的阿贡V18模型。这一模型考虑了当核子之间的距离越来越近时,可能会出现的18种不同的核子间相互作用。

这意味着,如果想要计算中子星的属性,科学家可以借助这种特殊的阿贡V18模型,精确估算出在中子星的核中,成对的核子间强核力相互作用。这些新的数据也可以用来作为其他为中子星核建模的方法的基准。

研究人员认为,最令人兴奋的发现是,这一模型在没有明确考虑夸克和胶子的情况下,描述了核子在极短距离内的相互作用。物理学家曾设想,在如中子星核等密度极高、极混乱的环境中,中子之间的相互作用应该让位于夸克和胶子之间的复杂作用力。而该模型并没有考虑这些更复杂的相互作用,并且它在短距离上作出的预测与观察结果非常相符,因此研究人员认为,或许用一种不那么复杂的方式就可以描述中子星的核。

Hen说:“人们认为这个系统的密度太大,应该把它看作是夸克和胶子的混合物。但我们却发现,即使在密度如此之高的情况下,也可以用质子和中子来描述这些相互作用。这些核子似乎维持了自己的身份,没有变成夸克。所以中子星的核心或许比人们想象的要简单得多。这是一个巨大的惊喜。”

相关文章

  • 安全无辐射的核聚变技术来了?

    安全无辐射的核聚变技术来了? [1]1无中子聚变核聚变是理论上清洁、安全的人类能源需求解决方案,人们对此期待已久。,他们是用激光通过非线性力大规模地加速氢原子核,使之穿过硼样品,这就像是用氢作为标枪,希望击中硼原子,如果击中一个,就可以启动聚变反应。,”3距离实际应用还有多远?那么,氢硼核聚变反应堆还需要多长时间才能成为商业现实呢?McKenzie博士没有对此做出预测,他说:“规划时间点是个棘手难缠的问题,我不想承诺我们能在1

    2024-03-22 08:32
  • 中子星有多小?直径22公里的球体重达两倍太阳质量

    中子星有多小?直径22公里的球体重达两倍太阳质量 最新测量结果表明,通常情况下,一个黑洞完全可以吞噬整个中子星,但是天文学家使用传统望远镜很难发现相关证据。,通过测量中子星属性,我们可以掌握在亚原子等级上支配物质的基本物理学原理。,”目前天文学家不需要太长时间就能验证这一观点是否正确,未来几年,引力波探测器将变得越来越强大,如果中子星与黑洞碰撞事件比预期更少,至少科学家能够知道为什么会这样。

    2024-03-22 08:25
  • 有些恒星会以爆炸形式结束生命:氖元素发挥重要作用

    有些恒星会以爆炸形式结束生命:氖元素发挥重要作用 计算机模拟显示,它们会形成由氧、氖和镁几种元素构成的内核。,为此,他们在芬兰的JYFL加速器实验室中,用一束氟原子束轰击了一张碳膜。,”科尔斯伯姆指出,“在特定条件下,它会对恒星的演变产生重大影响。

    2024-03-22 08:19
  • 黑洞和中子星碰撞合并事件:不产生可探测到的光线

    黑洞和中子星碰撞合并事件:不产生可探测到的光线 新浪科技讯北京时间5月12日消息,据国外媒体报道,迄今为止,天文学家还没有观测到黑洞与中子星碰撞事件,一项最新研究表明,这种碰撞事件会释放大量能量,但出乎意料的是,可能不会产生任何可以探测到的光线。这些发现揭示了黑洞和中子星合并的关键细节——可探测光线数量和碰撞天体的质量,以及揭示合并的促成因素,例如:促使这些碰撞发生的动力学。黑洞和中子星都是超新星灾难性爆炸的恒星残骸,超新星的爆发可使一颗恒星短

    2024-03-22 08:01
  • 中子星内部夸克物质或被证实 将对物理学研究产生深远影响

    中子星内部夸克物质或被证实 将对物理学研究产生深远影响 芬兰科学家在最新一期《自然·物理学》杂志撰文指出,他们已经找到有力证据,证明迄今最大中子星内核存在奇异的夸克物质,这一结论或。,但在中子星内部,原子会坍塌成密度极高的核物质,其中中子和质子紧紧“依偎”在一起,因此整个中子星可视为一个巨大的核。,赫尔辛基大学副教授阿列克西·沃林恩说,中子星的确切结构仍存在诸多不确定性。

    2024-03-22 07:49
  • 科学家观测到中子星与黑洞碰撞产生的引力波

    科学家观测到中子星与黑洞碰撞产生的引力波 当超大质量天体扭曲周围时空并在宇宙释放涟漪时,会形成引力波。,研究报告合著作者、美国西北大学引力波天文学家克里斯多夫·贝里(ChristopherBerry)说:“这是一个非常奇妙的事情,它将真实改变我们对黑洞和中子星形成的理解,在我们能够获得更多观测结果之前,这仍是一个谜团,但这并不意味着它没有提供更多线索。,如果这个质量差距比之前假设的小得多,或者根本不存在,那么就需要对这些模型进行调整。

    2024-03-22 07:39
  • 16天一“闪”的它暗藏了多少信息?

    16天一“闪”的它暗藏了多少信息? 起先,人们认为FRB起源于一些极端的灾难性事件,如双致密天体并合、超新星爆发等。,另外,具有宽功率谱的随机过程,即红噪声,其功率密度平滑地增加到低频。,这需要我们在未来使用大型观测设备投入更多的时间跟精力进行探索。

    2024-03-22 07:37